Skip to main content
curl -X GET "https://api.omophub.com/v1/search/facets?query=diabetes&facet_types=vocabulary,domain,concept_class,specialty&include_counts=true&include_percentages=true&max_facet_values=20" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json"
{
  "success": true,
  "data": {
    "query": "diabetes",
    "facet_metadata": {
      "total_concepts": 1247,
      "facet_types_included": [
        "vocabulary",
        "domain", 
        "concept_class",
        "specialty"
      ],
      "facet_depth": "standard",
      "generation_time_ms": 234,
      "context_applied": {
        "medical_context": null,
        "user_context": null,
        "temporal_scope": "current"
      }
    },
    "facets": {
      "vocabulary": {
        "facet_type": "vocabulary",
        "display_name": "Medical Vocabularies",
        "description": "Source vocabularies containing matching concepts",
        "values": [
          {
            "value": "SNOMED",
            "display_name": "SNOMED CT",
            "count": 847,
            "percentage": 67.9,
            "description": "Systematized Nomenclature of Medicine Clinical Terms",
            "metadata": {
              "organization": "SNOMED International",
              "version": "2024.2",
              "update_frequency": "Bi-annual",
              "coverage_domains": [
                "Condition",
                "Procedure", 
                "Observation"
              ]
            },
            "trend_info": {
              "trend": "stable",
              "recent_additions": 23
            }
          },
          {
            "value": "ICD10CM",
            "display_name": "ICD-10-CM",
            "count": 234,
            "percentage": 18.8,
            "description": "International Classification of Diseases, 10th Revision, Clinical Modification",
            "metadata": {
              "organization": "WHO/CDC",
              "version": "2024",
              "update_frequency": "Annual",
              "coverage_domains": [
                "Condition"
              ]
            },
            "trend_info": {
              "trend": "stable",
              "recent_additions": 5
            }
          },
          {
            "value": "LOINC",
            "display_name": "LOINC",
            "count": 89,
            "percentage": 7.1,
            "description": "Logical Observation Identifiers Names and Codes",
            "metadata": {
              "organization": "LOINC Committee",
              "version": "2.76",
              "update_frequency": "Bi-annual",
              "coverage_domains": [
                "Measurement",
                "Observation"
              ]
            },
            "trend_info": {
              "trend": "growing",
              "recent_additions": 12
            }
          },
          {
            "value": "RXNORM",
            "display_name": "RxNorm",
            "count": 77,
            "percentage": 6.2,
            "description": "Normalized names for clinical drugs",
            "metadata": {
              "organization": "NLM",
              "version": "2024-01",
              "update_frequency": "Monthly",
              "coverage_domains": [
                "Drug"
              ]
            },
            "trend_info": {
              "trend": "stable",
              "recent_additions": 8
            }
          }
        ]
      },
      "domain": {
        "facet_type": "domain",
        "display_name": "Medical Domains",
        "values": [
          {
            "value": "Condition",
            "display_name": "Condition",
            "count": 923,
            "percentage": 74.0,
            "description": "Clinical conditions, diseases, and disorders",
            "clinical_context": "Diagnostic and clinical conditions",
            "specialties": [
              "endocrinology",
              "internal_medicine",
              "family_medicine"
            ],
            "subcategories": [
              "Metabolic disorders",
              "Endocrine disorders",
              "Chronic conditions"
            ]
          },
          {
            "value": "Observation",
            "display_name": "Observation",
            "count": 156,
            "percentage": 12.5,
            "description": "Clinical observations and findings",
            "clinical_context": "Clinical assessments and observations",
            "specialties": [
              "endocrinology",
              "laboratory_medicine"
            ],
            "subcategories": [
              "Laboratory findings",
              "Clinical assessments"
            ]
          },
          {
            "value": "Measurement",
            "display_name": "Measurement",
            "count": 89,
            "percentage": 7.1,
            "description": "Quantitative measurements and test results",
            "clinical_context": "Laboratory tests and measurements",
            "specialties": [
              "laboratory_medicine",
              "endocrinology"
            ],
            "subcategories": [
              "Blood glucose tests",
              "HbA1c measurements"
            ]
          },
          {
            "value": "Drug",
            "display_name": "Drug", 
            "count": 79,
            "percentage": 6.3,
            "description": "Medications and pharmaceutical products",
            "clinical_context": "Diabetes medications and treatments",
            "specialties": [
              "endocrinology",
              "pharmacy"
            ],
            "subcategories": [
              "Antidiabetic agents",
              "Insulin preparations"
            ]
          }
        ]
      },
      "concept_class": {
        "facet_type": "concept_class",
        "display_name": "Concept Classes",
        "values": [
          {
            "value": "Clinical Finding",
            "display_name": "Clinical Finding",
            "count": 623,
            "percentage": 50.0,
            "description": "Clinical observations and findings",
            "vocabulary_distribution": [
              {"vocabulary": "SNOMED", "count": 598},
              {"vocabulary": "ICD10CM", "count": 25}
            ],
            "typical_use_cases": [
              "Diagnosis",
              "Clinical documentation",
              "Medical coding"
            ]
          },
          {
            "value": "Disorder",
            "display_name": "Disorder",
            "count": 234,
            "percentage": 18.8,
            "description": "Medical disorders and conditions",
            "vocabulary_distribution": [
              {"vocabulary": "SNOMED", "count": 187},
              {"vocabulary": "ICD10CM", "count": 47}
            ],
            "typical_use_cases": [
              "Disease classification",
              "Medical billing"
            ]
          },
          {
            "value": "3-char billing code",
            "display_name": "ICD-10-CM Category",
            "count": 156,
            "percentage": 12.5,
            "description": "ICD-10-CM 3-character category codes",
            "vocabulary_distribution": [
              {"vocabulary": "ICD10CM", "count": 156}
            ],
            "typical_use_cases": [
              "Medical billing",
              "Administrative coding"
            ]
          }
        ]
      },
      "specialty": {
        "facet_type": "specialty",
        "display_name": "Medical Specialties",
        "values": [
          {
            "value": "endocrinology",
            "display_name": "Endocrinology",
            "count": 1089,
            "relevance_score": 0.95,
            "primary_domains": [
              "Condition",
              "Observation",
              "Drug"
            ],
            "common_procedures": [
              "Blood glucose monitoring",
              "HbA1c testing",
              "Insulin therapy"
            ],
            "related_specialties": [
              "internal_medicine",
              "family_medicine"
            ]
          },
          {
            "value": "internal_medicine",
            "display_name": "Internal Medicine",
            "count": 923,
            "relevance_score": 0.87,
            "primary_domains": [
              "Condition",
              "Observation"
            ],
            "common_procedures": [
              "Diabetes management",
              "Medication management"
            ],
            "related_specialties": [
              "endocrinology",
              "family_medicine"
            ]
          },
          {
            "value": "family_medicine",
            "display_name": "Family Medicine",
            "count": 756,
            "relevance_score": 0.78,
            "primary_domains": [
              "Condition",
              "Observation"
            ],
            "common_procedures": [
              "Diabetes screening",
              "Patient education"
            ],
            "related_specialties": [
              "internal_medicine",
              "endocrinology"
            ]
          },
          {
            "value": "ophthalmology",
            "display_name": "Ophthalmology",
            "count": 234,
            "relevance_score": 0.65,
            "primary_domains": [
              "Condition",
              "Procedure"
            ],
            "common_procedures": [
              "Diabetic retinopathy screening",
              "Retinal examination"
            ],
            "related_specialties": [
              "endocrinology"
            ]
          }
        ]
      }
    },
    "facet_relationships": {
      "correlations": [
        {
          "facet_types": ["domain", "specialty"],
          "correlation": "Condition domain strongly correlates with endocrinology specialty"
        }
      ],
      "hierarchies": [
        {
          "parent": "Condition",
          "children": ["Clinical Finding", "Disorder"]
        }
      ],
      "exclusions": [
        {
          "facet_type": "standard_concept",
          "mutually_exclusive": ["S", "N"]
        }
      ]
    },
    "suggested_filters": [
      {
        "filter_name": "Endocrine Conditions",
        "filter_combination": {
          "domain": "Condition",
          "specialty": "endocrinology",
          "concept_class": "Clinical Finding"
        },
        "expected_results": 623,
        "use_case": "Clinical diabetes management"
      },
      {
        "filter_name": "Diabetes Medications",
        "filter_combination": {
          "domain": "Drug",
          "specialty": "endocrinology",
          "vocabulary": "RXNORM"
        },
        "expected_results": 77,
        "use_case": "Pharmaceutical diabetes treatment"
      }
    ]
  },
  "meta": {
    "request_id": "req_search_facets_123",
    "timestamp": "2024-01-15T10:30:00Z",
    "facet_engine_version": "v2.3.1",
    "total_facet_values": 47,
    "computation_time_ms": 234,
    "cache_info": {
      "cached": true,
      "cache_key": "facets_diabetes_standard",
      "ttl_remaining": 3456
    },
    "vocab_release": "2025.2"
  }
}

Overview

This endpoint provides faceted search capabilities for medical terminology, returning structured filters and categories that can be used to refine search results. It enables users to explore medical vocabularies through multiple dimensions such as domains, vocabularies, concept classes, and other medical attributes.

Query Parameters

query
string
Base search query to generate facets for (optional for general facets)
vocabulary_ids
string
Target vocabularies for facet generation (comma-separated)
Examples: SNOMED, ICD10CM,LOINC, RXNORM,NDC
domains
string
Pre-filter facets to specific domains (comma-separated)
Examples: Condition,Procedure, Drug,Device
concept_classes
string
Pre-filter facets to specific concept classes (comma-separated)
facet_types
string
default:"all"
Types of facets to include (comma-separated)
Options: vocabulary, domain, concept_class, standard_concept, specialty, usage_frequency, date_range, language, all
include_counts
boolean
default:"true"
Include concept counts for each facet value
include_percentages
boolean
default:"false"
Include percentage distributions for facet values
Include trend information for facet values
medical_context
string
Medical specialty context for facet relevance
Examples: cardiology, oncology, pediatrics, emergency_medicine
user_context
string
User type for facet customization
Options: physician, nurse, pharmacist, researcher, patient, student
facet_depth
string
default:"standard"
Depth of facet hierarchy to return
Options: minimal, standard, detailed, comprehensive
min_count
integer
default:"1"
Minimum concept count for facet values to be included
max_facet_values
integer
default:"50"
Maximum number of values per facet type (max 200)
sort_facets_by
string
default:"count"
Sort order for facet values
Options: count, alphabetical, relevance, frequency, recent_usage
include_hierarchical
boolean
default:"true"
Include hierarchical facet structures where applicable
Include facets for related concepts
temporal_scope
string
default:"current"
Temporal scope for facet generation
Options: current, historical, trending, recent, all_time
language
string
default:"en"
Language for facet labels and descriptions
regional_variant
string
Regional variant for terminology preferences
Examples: US, UK, AU, CA
standard_concept
string
Filter facets by standard concept status: S, N, C
include_invalid
boolean
default:"false"
Include facets for invalid/deprecated concepts
vocab_release
string
Specific vocabulary release version (defaults to latest)

Response

success
boolean
Indicates if the request was successful
data
object
meta
object
curl -X GET "https://api.omophub.com/v1/search/facets?query=diabetes&facet_types=vocabulary,domain,concept_class,specialty&include_counts=true&include_percentages=true&max_facet_values=20" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: application/json"
{
  "success": true,
  "data": {
    "query": "diabetes",
    "facet_metadata": {
      "total_concepts": 1247,
      "facet_types_included": [
        "vocabulary",
        "domain", 
        "concept_class",
        "specialty"
      ],
      "facet_depth": "standard",
      "generation_time_ms": 234,
      "context_applied": {
        "medical_context": null,
        "user_context": null,
        "temporal_scope": "current"
      }
    },
    "facets": {
      "vocabulary": {
        "facet_type": "vocabulary",
        "display_name": "Medical Vocabularies",
        "description": "Source vocabularies containing matching concepts",
        "values": [
          {
            "value": "SNOMED",
            "display_name": "SNOMED CT",
            "count": 847,
            "percentage": 67.9,
            "description": "Systematized Nomenclature of Medicine Clinical Terms",
            "metadata": {
              "organization": "SNOMED International",
              "version": "2024.2",
              "update_frequency": "Bi-annual",
              "coverage_domains": [
                "Condition",
                "Procedure", 
                "Observation"
              ]
            },
            "trend_info": {
              "trend": "stable",
              "recent_additions": 23
            }
          },
          {
            "value": "ICD10CM",
            "display_name": "ICD-10-CM",
            "count": 234,
            "percentage": 18.8,
            "description": "International Classification of Diseases, 10th Revision, Clinical Modification",
            "metadata": {
              "organization": "WHO/CDC",
              "version": "2024",
              "update_frequency": "Annual",
              "coverage_domains": [
                "Condition"
              ]
            },
            "trend_info": {
              "trend": "stable",
              "recent_additions": 5
            }
          },
          {
            "value": "LOINC",
            "display_name": "LOINC",
            "count": 89,
            "percentage": 7.1,
            "description": "Logical Observation Identifiers Names and Codes",
            "metadata": {
              "organization": "LOINC Committee",
              "version": "2.76",
              "update_frequency": "Bi-annual",
              "coverage_domains": [
                "Measurement",
                "Observation"
              ]
            },
            "trend_info": {
              "trend": "growing",
              "recent_additions": 12
            }
          },
          {
            "value": "RXNORM",
            "display_name": "RxNorm",
            "count": 77,
            "percentage": 6.2,
            "description": "Normalized names for clinical drugs",
            "metadata": {
              "organization": "NLM",
              "version": "2024-01",
              "update_frequency": "Monthly",
              "coverage_domains": [
                "Drug"
              ]
            },
            "trend_info": {
              "trend": "stable",
              "recent_additions": 8
            }
          }
        ]
      },
      "domain": {
        "facet_type": "domain",
        "display_name": "Medical Domains",
        "values": [
          {
            "value": "Condition",
            "display_name": "Condition",
            "count": 923,
            "percentage": 74.0,
            "description": "Clinical conditions, diseases, and disorders",
            "clinical_context": "Diagnostic and clinical conditions",
            "specialties": [
              "endocrinology",
              "internal_medicine",
              "family_medicine"
            ],
            "subcategories": [
              "Metabolic disorders",
              "Endocrine disorders",
              "Chronic conditions"
            ]
          },
          {
            "value": "Observation",
            "display_name": "Observation",
            "count": 156,
            "percentage": 12.5,
            "description": "Clinical observations and findings",
            "clinical_context": "Clinical assessments and observations",
            "specialties": [
              "endocrinology",
              "laboratory_medicine"
            ],
            "subcategories": [
              "Laboratory findings",
              "Clinical assessments"
            ]
          },
          {
            "value": "Measurement",
            "display_name": "Measurement",
            "count": 89,
            "percentage": 7.1,
            "description": "Quantitative measurements and test results",
            "clinical_context": "Laboratory tests and measurements",
            "specialties": [
              "laboratory_medicine",
              "endocrinology"
            ],
            "subcategories": [
              "Blood glucose tests",
              "HbA1c measurements"
            ]
          },
          {
            "value": "Drug",
            "display_name": "Drug", 
            "count": 79,
            "percentage": 6.3,
            "description": "Medications and pharmaceutical products",
            "clinical_context": "Diabetes medications and treatments",
            "specialties": [
              "endocrinology",
              "pharmacy"
            ],
            "subcategories": [
              "Antidiabetic agents",
              "Insulin preparations"
            ]
          }
        ]
      },
      "concept_class": {
        "facet_type": "concept_class",
        "display_name": "Concept Classes",
        "values": [
          {
            "value": "Clinical Finding",
            "display_name": "Clinical Finding",
            "count": 623,
            "percentage": 50.0,
            "description": "Clinical observations and findings",
            "vocabulary_distribution": [
              {"vocabulary": "SNOMED", "count": 598},
              {"vocabulary": "ICD10CM", "count": 25}
            ],
            "typical_use_cases": [
              "Diagnosis",
              "Clinical documentation",
              "Medical coding"
            ]
          },
          {
            "value": "Disorder",
            "display_name": "Disorder",
            "count": 234,
            "percentage": 18.8,
            "description": "Medical disorders and conditions",
            "vocabulary_distribution": [
              {"vocabulary": "SNOMED", "count": 187},
              {"vocabulary": "ICD10CM", "count": 47}
            ],
            "typical_use_cases": [
              "Disease classification",
              "Medical billing"
            ]
          },
          {
            "value": "3-char billing code",
            "display_name": "ICD-10-CM Category",
            "count": 156,
            "percentage": 12.5,
            "description": "ICD-10-CM 3-character category codes",
            "vocabulary_distribution": [
              {"vocabulary": "ICD10CM", "count": 156}
            ],
            "typical_use_cases": [
              "Medical billing",
              "Administrative coding"
            ]
          }
        ]
      },
      "specialty": {
        "facet_type": "specialty",
        "display_name": "Medical Specialties",
        "values": [
          {
            "value": "endocrinology",
            "display_name": "Endocrinology",
            "count": 1089,
            "relevance_score": 0.95,
            "primary_domains": [
              "Condition",
              "Observation",
              "Drug"
            ],
            "common_procedures": [
              "Blood glucose monitoring",
              "HbA1c testing",
              "Insulin therapy"
            ],
            "related_specialties": [
              "internal_medicine",
              "family_medicine"
            ]
          },
          {
            "value": "internal_medicine",
            "display_name": "Internal Medicine",
            "count": 923,
            "relevance_score": 0.87,
            "primary_domains": [
              "Condition",
              "Observation"
            ],
            "common_procedures": [
              "Diabetes management",
              "Medication management"
            ],
            "related_specialties": [
              "endocrinology",
              "family_medicine"
            ]
          },
          {
            "value": "family_medicine",
            "display_name": "Family Medicine",
            "count": 756,
            "relevance_score": 0.78,
            "primary_domains": [
              "Condition",
              "Observation"
            ],
            "common_procedures": [
              "Diabetes screening",
              "Patient education"
            ],
            "related_specialties": [
              "internal_medicine",
              "endocrinology"
            ]
          },
          {
            "value": "ophthalmology",
            "display_name": "Ophthalmology",
            "count": 234,
            "relevance_score": 0.65,
            "primary_domains": [
              "Condition",
              "Procedure"
            ],
            "common_procedures": [
              "Diabetic retinopathy screening",
              "Retinal examination"
            ],
            "related_specialties": [
              "endocrinology"
            ]
          }
        ]
      }
    },
    "facet_relationships": {
      "correlations": [
        {
          "facet_types": ["domain", "specialty"],
          "correlation": "Condition domain strongly correlates with endocrinology specialty"
        }
      ],
      "hierarchies": [
        {
          "parent": "Condition",
          "children": ["Clinical Finding", "Disorder"]
        }
      ],
      "exclusions": [
        {
          "facet_type": "standard_concept",
          "mutually_exclusive": ["S", "N"]
        }
      ]
    },
    "suggested_filters": [
      {
        "filter_name": "Endocrine Conditions",
        "filter_combination": {
          "domain": "Condition",
          "specialty": "endocrinology",
          "concept_class": "Clinical Finding"
        },
        "expected_results": 623,
        "use_case": "Clinical diabetes management"
      },
      {
        "filter_name": "Diabetes Medications",
        "filter_combination": {
          "domain": "Drug",
          "specialty": "endocrinology",
          "vocabulary": "RXNORM"
        },
        "expected_results": 77,
        "use_case": "Pharmaceutical diabetes treatment"
      }
    ]
  },
  "meta": {
    "request_id": "req_search_facets_123",
    "timestamp": "2024-01-15T10:30:00Z",
    "facet_engine_version": "v2.3.1",
    "total_facet_values": 47,
    "computation_time_ms": 234,
    "cache_info": {
      "cached": true,
      "cache_key": "facets_diabetes_standard",
      "ttl_remaining": 3456
    },
    "vocab_release": "2025.2"
  }
}

Usage Examples

Basic Facets for Query

Get facets for a specific search query:
curl -X GET "https://api.omophub.com/v1/search/facets?query=pneumonia&facet_types=vocabulary,domain,concept_class&include_counts=true" \
  -H "Authorization: Bearer YOUR_API_KEY"

Comprehensive Facet Analysis

Get detailed facets with all information:
curl -X GET "https://api.omophub.com/v1/search/facets?query=cardiac&facet_types=all&include_counts=true&include_percentages=true&include_trends=true&facet_depth=comprehensive" \
  -H "Authorization: Bearer YOUR_API_KEY"

Medical Specialty Focused Facets

Get facets relevant to a specific medical specialty:
curl -X GET "https://api.omophub.com/v1/search/facets?medical_context=cardiology&user_context=physician&facet_types=domain,concept_class,specialty&include_hierarchical=true" \
  -H "Authorization: Bearer YOUR_API_KEY"

Vocabulary-Specific Facets

Get facets for specific vocabularies:
curl -X GET "https://api.omophub.com/v1/search/facets?vocabulary_ids=SNOMED,ICD10CM&facet_types=domain,concept_class,usage_frequency&min_count=10&max_facet_values=15" \
  -H "Authorization: Bearer YOUR_API_KEY"

General Navigation Facets

Get facets for general terminology navigation:
curl -X GET "https://api.omophub.com/v1/search/facets?facet_types=vocabulary,domain,specialty&sort_facets_by=count&include_related_facets=true" \
  -H "Authorization: Bearer YOUR_API_KEY"

User-Contextualized Facets

Get facets customized for specific user types:
curl -X GET "https://api.omophub.com/v1/search/facets?query=medication&user_context=pharmacist&facet_types=vocabulary,domain,concept_class&medical_context=pharmacy" \
  -H "Authorization: Bearer YOUR_API_KEY"

Facet Types

Vocabulary Facets

  • Purpose: Filter by source vocabulary
  • Use Cases: Compare terminology coverage, choose appropriate vocabulary
  • Values: SNOMED, ICD10CM, LOINC, RxNorm, HCPCS, HCPCS
  • Metadata: Organization, version, update frequency, coverage

Domain Facets

  • Purpose: Filter by medical domain
  • Use Cases: Focus on specific types of medical concepts
  • Values: Condition, Procedure, Drug, Device, Measurement, Observation
  • Hierarchy: Sub-domains and categories within each domain

Concept Class Facets

  • Purpose: Filter by concept classification
  • Use Cases: Refine search to specific concept types
  • Values: Clinical Finding, Procedure, Pharmaceutical Product, etc.
  • Context: Vocabulary-specific concept classes

Specialty Facets

  • Purpose: Filter by medical specialty relevance
  • Use Cases: Find concepts relevant to specific medical practices
  • Values: Cardiology, Oncology, Pediatrics, Emergency Medicine, etc.
  • Relationships: Related specialties and common procedures

Usage Frequency Facets

  • Purpose: Filter by how commonly concepts are used
  • Use Cases: Find popular terms, discover rare conditions
  • Values: Very High, High, Medium, Low, Rare
  • Metrics: Search volume, clinical usage, documentation frequency

Standard Concept Facets

  • Purpose: Filter by OMOP standard concept status
  • Use Cases: Find standard concepts for analytics, non-standard for mapping
  • Values: Standard (S), Non-standard (N), Classification (C)
  • Usage: Critical for OMOP CDM implementations

Date Range Facets

  • Purpose: Filter by concept validity or update dates
  • Use Cases: Find recently updated concepts, historical analysis
  • Values: Current year, Last 5 years, Historical, etc.
  • Context: Version tracking and temporal analysis

Language Facets

  • Purpose: Filter by language availability
  • Use Cases: Multi-lingual implementations, translation coverage
  • Values: English, Spanish, French, German, etc.
  • Quality: Translation quality and coverage metrics

Facet Depth Levels

Minimal

  • Content: Basic facet values with counts
  • Performance: Fastest response time
  • Use Case: Simple filtering interfaces
  • Data: Value, count, basic display information

Standard

  • Content: Facet values with metadata and descriptions
  • Performance: Good response time
  • Use Case: General search interfaces
  • Data: Descriptions, percentages, basic relationships

Detailed

  • Content: Extended metadata and hierarchical relationships
  • Performance: Moderate response time
  • Use Case: Advanced search and analysis
  • Data: Hierarchies, correlations, trend information

Comprehensive

  • Content: Complete facet information with all metadata
  • Performance: Slower response time
  • Use Case: Research and comprehensive analysis
  • Data: All available metadata, relationships, and insights

User Context Customization

Physician Context

  • Priority: Clinical relevance, diagnostic focus
  • Emphasized Facets: Specialty, concept class, standard concepts
  • Hidden Facets: Patient-facing terminology, administrative codes
  • Sorting: Clinical relevance and frequency

Nurse Context

  • Priority: Patient care, nursing procedures
  • Emphasized Facets: Procedure domain, nursing specialties
  • Hidden Facets: Highly technical research terms
  • Sorting: Clinical usage and care relevance

Pharmacist Context

  • Priority: Drug-related terminology, pharmaceutical focus
  • Emphasized Facets: Drug domain, pharmaceutical vocabularies
  • Hidden Facets: Surgical procedures, diagnostic imaging
  • Sorting: Pharmaceutical relevance and usage

Researcher Context

  • Priority: Comprehensive coverage, analytical focus
  • Emphasized Facets: All vocabularies, comprehensive metadata
  • Hidden Facets: None (comprehensive view)
  • Sorting: Completeness and analytical value

Patient Context

  • Priority: Patient-friendly terminology, educational value
  • Emphasized Facets: Common conditions, patient-facing terms
  • Hidden Facets: Technical medical jargon, administrative codes
  • Sorting: Common usage and understandability

Student Context

  • Priority: Educational value, learning focus
  • Emphasized Facets: Concept classes, educational metadata
  • Hidden Facets: Highly specialized professional terms
  • Sorting: Educational relevance and frequency

Performance Optimization

Caching Strategies

  • Query-Based Cache: Cache facets for common queries
  • Context Cache: Cache facets for user contexts
  • Vocabulary Cache: Cache vocabulary-specific facets
  • Time-Based Cache: Cache with appropriate TTL

Computation Optimization

  • Pre-computed Facets: Common facet combinations
  • Incremental Updates: Update facets as data changes
  • Parallel Processing: Generate facets in parallel
  • Smart Filtering: Apply filters during facet generation

Response Optimization

  • Selective Loading: Load only requested facet types
  • Hierarchical Loading: Load parent facets first, children on demand
  • Compression: Compress large facet responses
  • Streaming: Stream large facet sets
I