Insurance Claims Processing with OMOPHub
Note: This guide is for illustrative purposes only and is not billing, coding, or legal advice. Ensure PHI is handled per HIPAA and organizational policy.
Overview
Insurance claims processing involves validating medical codes, checking procedure-diagnosis relationships, detecting duplicates, and ensuring compliance with coverage policies. Manual review is time-intensive and error-prone, leading to claim denials, payment delays, and administrative burden. The OMOPHub API enables automated claims processing by providing access to standardized medical vocabularies (ICD-10, HCPCS), relationship validation, and hierarchical code analysis for comprehensive claims review.Business Problem
Healthcare payers face several critical challenges in claims processing:- Coding Errors: 30-40% of claims contain coding errors requiring manual review
- Missing Information: Incomplete procedure-diagnosis relationships delay processing
- Fraud Detection: Complex patterns require sophisticated analysis of code relationships
- Prior Authorization: Manual verification of coverage requirements is time-intensive
- Claims Enrichment: Additional relevant codes could optimize reimbursement but aren’t identified
Solution Architecture
Implementation Guide
Python Implementation
Copy
import requests
import json
from typing import List, Dict, Optional, Tuple
from dataclasses import dataclass
from datetime import datetime, timedelta
from collections import defaultdict
import logging
@dataclass
class ClaimLine:
procedure_code: str
procedure_code_type: str # HCPCS
diagnosis_codes: List[str]
diagnosis_code_type: str # ICD10CM
units: int
charge_amount: float
service_date: str
@dataclass
class ClaimValidationResult:
is_valid: bool
errors: List[str]
warnings: List[str]
suggested_codes: List[str]
fraud_risk_score: float
@dataclass
class EnrichedClaim:
original_claim: ClaimLine
additional_diagnosis_codes: List[str]
alternative_procedure_codes: List[str]
supporting_relationships: List[Dict]
class InsuranceClaimsProcessor:
def __init__(self, api_key: str, base_url: str = "https://api.omophub.com"):
self.api_key = api_key
self.base_url = base_url
self.headers = {"Authorization": f"Bearer {api_key}"}
self.session = requests.Session()
self.timeout = 10 # seconds
self.fraud_patterns = {}
self.prior_auth_requirements = {}
def validate_claim(self, claim: ClaimLine) -> ClaimValidationResult:
"""Comprehensive claim validation including code validation and relationship checks."""
errors = []
warnings = []
suggested_codes = []
# Validate procedure codes
proc_validation = self._validate_procedure_code(
claim.procedure_code,
claim.procedure_code_type
)
if not proc_validation['is_valid']:
errors.extend(proc_validation['errors'])
# Validate diagnosis codes
for dx_code in claim.diagnosis_codes:
dx_validation = self._validate_diagnosis_code(dx_code, claim.diagnosis_code_type)
if not dx_validation['is_valid']:
errors.extend(dx_validation['errors'])
# Check procedure-diagnosis relationships
relationship_check = self._validate_procedure_diagnosis_relationships(
claim.procedure_code,
claim.diagnosis_codes
)
if not relationship_check['appropriate']:
warnings.extend(relationship_check['warnings'])
suggested_codes.extend(relationship_check['suggested_diagnoses'])
# Calculate fraud risk score
fraud_score = self._calculate_fraud_risk(claim)
return ClaimValidationResult(
is_valid=len(errors) == 0,
errors=errors,
warnings=warnings,
suggested_codes=suggested_codes,
fraud_risk_score=fraud_score
)
def _validate_procedure_code(self, code: str, code_type: str) -> Dict:
"""Validate HCPCS/HCPCS procedure codes."""
vocabulary_map = {
'HCPCS': 'HCPCS',
'HCPCS': 'HCPCS'
}
if code_type not in vocabulary_map:
return {
'is_valid': False,
'errors': [f"Unsupported procedure code type: {code_type}"]
}
try:
response = requests.get(
f"{self.base_url}/v1/concepts/search",
headers=self.headers,
params={
'query': code,
'vocabulary_ids': vocabulary_map[code_type],
'standard_concept': 'S',
'page_size': 1
}
)
response.raise_for_status()
data = response.json()
if data['data']:
concept = data['data'][0]
return {
'is_valid': True,
'concept_name': concept['concept_name'],
'concept_id': concept['concept_id']
}
else:
return {
'is_valid': False,
'errors': [f"Invalid {code_type} code: {code}"]
}
except requests.RequestException as e:
return {
'is_valid': False,
'errors': [f"Error validating procedure code: {str(e)}"]
}
def _validate_diagnosis_code(self, code: str, code_type: str) -> Dict:
"""Validate ICD-10-CM diagnosis codes."""
vocabulary_map = {
'ICD10CM': 'ICD10CM'
}
if code_type not in vocabulary_map:
return {
'is_valid': False,
'errors': [f"Unsupported diagnosis code type: {code_type}"]
}
try:
response = requests.get(
f"{self.base_url}/v1/concepts/search",
headers=self.headers,
params={
'query': code,
'vocabulary_ids': vocabulary_map[code_type],
'standard_concept': 'S',
'page_size': 1
}
)
response.raise_for_status()
data = response.json()
if data['data']:
return {
'is_valid': True,
'concept_name': data['data'][0]['concept_name']
}
else:
return {
'is_valid': False,
'errors': [f"Invalid {code_type} code: {code}"]
}
except requests.RequestException as e:
return {
'is_valid': False,
'errors': [f"Error validating diagnosis code: {str(e)}"]
}
def _validate_procedure_diagnosis_relationships(self, procedure_code: str, diagnosis_codes: List[str]) -> Dict:
"""Check if procedure-diagnosis combinations are clinically appropriate."""
# Get procedure concept
try:
proc_response = requests.get(
f"{self.base_url}/v1/concepts/search",
headers=self.headers,
params={
'query': procedure_code,
'vocabulary_ids': 'HCPCS,HCPCS',
'page_size': 1
}
)
proc_response.raise_for_status()
proc_data = proc_response.json()
if not proc_data['data']:
return {
'appropriate': False,
'warnings': [f"Procedure code not found: {procedure_code}"]
}
procedure_concept_id = proc_data['data'][0]['concept_id']
# Get related conditions for this procedure
relations_response = requests.get(
f"{self.base_url}/v1/concepts/{procedure_concept_id}/relationships",
headers=self.headers,
params={
'relationship_types': 'Has indication,Treats',
'include_synonyms': True
}
)
relations_response.raise_for_status()
relations_data = relations_response.json()
# Extract indication concepts
indication_concepts = []
for relationship in relations_data.get('data', []):
if relationship['relationship_name'] in ['Has indication', 'Treats']:
indication_concepts.append(relationship['related_concept'])
# Check if any diagnosis codes align with indications
appropriate_diagnoses = []
for dx_code in diagnosis_codes:
# Find concept for diagnosis
dx_response = requests.get(
f"{self.base_url}/v1/concepts/search",
headers=self.headers,
params={
'query': dx_code,
'vocabulary_ids': 'ICD10CM',
'page_size': 1
}
)
dx_response.raise_for_status()
dx_data = dx_response.json()
if dx_data['data']:
dx_concept_id = dx_data['data'][0]['concept_id']
# Check if diagnosis aligns with procedure indications
for indication in indication_concepts:
if dx_concept_id == indication['concept_id']:
appropriate_diagnoses.append(dx_code)
break
if not appropriate_diagnoses and diagnosis_codes:
return {
'appropriate': False,
'warnings': [f"Procedure {procedure_code} may not be appropriate for provided diagnoses"],
'suggested_diagnoses': [concept['concept_code'] for concept in indication_concepts[:5]]
}
return {
'appropriate': True,
'matching_diagnoses': appropriate_diagnoses
}
except requests.RequestException as e:
return {
'appropriate': False,
'warnings': [f"Error checking procedure-diagnosis relationships: {str(e)}"]
}
def _calculate_fraud_risk(self, claim: ClaimLine) -> float:
"""Calculate fraud risk score based on various factors."""
risk_score = 0.0
# High-value procedures get higher scrutiny
if claim.charge_amount > 10000:
risk_score += 0.3
elif claim.charge_amount > 5000:
risk_score += 0.2
# Unusual unit counts
if claim.units > 10:
risk_score += 0.2
# Multiple diagnosis codes might indicate upcoding
if len(claim.diagnosis_codes) > 5:
risk_score += 0.1
# Check against known fraud patterns
procedure_diagnosis_combo = f"{claim.procedure_code}_{','.join(sorted(claim.diagnosis_codes))}"
if procedure_diagnosis_combo in self.fraud_patterns:
risk_score += self.fraud_patterns[procedure_diagnosis_combo]
return min(risk_score, 1.0)
def enrich_claim(self, claim: ClaimLine) -> EnrichedClaim:
"""Suggest additional relevant codes to maximize reimbursement."""
additional_diagnoses = []
alternative_procedures = []
supporting_relationships = []
try:
# Find related diagnosis codes
for dx_code in claim.diagnosis_codes:
dx_response = requests.get(
f"{self.base_url}/v1/concepts/search",
headers=self.headers,
params={
'query': dx_code,
'vocabulary_ids': 'ICD10CM',
'page_size': 1
}
)
dx_response.raise_for_status()
dx_data = dx_response.json()
if dx_data['data']:
concept_id = dx_data['data'][0]['concept_id']
# Get hierarchical relationships
hierarchy_response = requests.get(
f"{self.base_url}/v1/concepts/{concept_id}/hierarchy",
headers=self.headers,
params={
'include_ancestors': True,
'include_descendants': True,
'max_levels': 2
}
)
hierarchy_response.raise_for_status()
hierarchy_data = hierarchy_response.json()
# Extract relevant related conditions
for item in hierarchy_data.get('data', []):
if (item['concept']['vocabulary_id'] == 'ICD10CM' and
item['concept']['concept_code'] not in claim.diagnosis_codes):
additional_diagnoses.append(item['concept']['concept_code'])
# Find alternative procedures
proc_response = requests.get(
f"{self.base_url}/v1/concepts/search",
headers=self.headers,
params={
'query': claim.procedure_code,
'vocabulary_ids': 'HCPCS,HCPCS',
'page_size': 1
}
)
proc_response.raise_for_status()
proc_data = proc_response.json()
if proc_data['data']:
proc_concept_id = proc_data['data'][0]['concept_id']
# Get procedure relationships
proc_relations_response = requests.get(
f"{self.base_url}/v1/concepts/{proc_concept_id}/relationships",
headers=self.headers,
params={
'relationship_types': 'Procedure site,Has finding site',
'include_synonyms': True
}
)
proc_relations_response.raise_for_status()
proc_relations_data = proc_relations_response.json()
supporting_relationships = proc_relations_data.get('data', [])
except requests.RequestException as e:
logging.error(f"Error enriching claim: {str(e)}")
return EnrichedClaim(
original_claim=claim,
additional_diagnosis_codes=additional_diagnoses[:5], # Limit suggestions
alternative_procedure_codes=alternative_procedures[:3],
supporting_relationships=supporting_relationships
)
def check_prior_authorization(self, claim: ClaimLine, member_id: str, policy_id: str) -> Dict:
"""Check if procedure requires prior authorization."""
# This would integrate with payer-specific prior auth databases
# For demo purposes, using simplified logic based on procedure codes
high_cost_procedures = {
high_cost_procedures = {
'27447', # Total knee arthroplasty
'23472', # Total shoulder arthroplasty
'22630', # Lumbar spinal fusion (one interspace)
'33533', # Coronary artery bypass; single arterial graft
}
authorization_required = claim.procedure_code in high_cost_procedures
if authorization_required:
# Check if authorization already exists
auth_exists = self._check_existing_authorization(member_id, claim.procedure_code)
return {
'authorization_required': True,
'authorization_exists': auth_exists,
'status': 'approved' if auth_exists else 'pending',
'procedure_name': self._get_procedure_name(claim.procedure_code)
}
return {
'authorization_required': False,
'status': 'not_required'
}
def _check_existing_authorization(self, member_id: str, procedure_code: str) -> bool:
def _get_procedure_name(self, procedure_code: str) -> str:
"""Get human-readable procedure name."""
try:
response = self.session.get(
f"{self.base_url}/v1/concepts/search",
headers=self.headers,
params={
'query': procedure_code,
'vocabulary_ids': 'HCPCS,HCPCS',
'page_size': 1
},
timeout=self.timeout
)
if not response.ok:
return None
data = response.json()
if data.get('data'):
return data['data'][0]['concept_name']
return None
except (requests.RequestException, ValueError, KeyError) as e:
# Log error or handle as needed
return None
def process_batch_claims(self, claims: List[ClaimLine]) -> Dict:
"""Process multiple claims efficiently."""
results = {
'total_claims': len(claims),
'valid_claims': 0,
'invalid_claims': 0,
'high_risk_claims': 0,
'claims_requiring_auth': 0,
'enrichment_opportunities': 0,
'detailed_results': []
}
for claim in claims:
# Validate claim
validation = self.validate_claim(claim)
# Check prior authorization
auth_check = self.check_prior_authorization(claim, "member_123", "policy_456")
# Enrich claim
enriched = self.enrich_claim(claim)
# Update counters
if validation.is_valid:
results['valid_claims'] += 1
else:
results['invalid_claims'] += 1
if validation.fraud_risk_score > 0.7:
results['high_risk_claims'] += 1
if auth_check['authorization_required']:
results['claims_requiring_auth'] += 1
if enriched.additional_diagnosis_codes or enriched.alternative_procedure_codes:
results['enrichment_opportunities'] += 1
results['detailed_results'].append({
'claim': claim,
'validation': validation,
'authorization': auth_check,
'enrichment': enriched
})
return results
# Example usage
def main():
processor = InsuranceClaimsProcessor("your-api-key")
# Sample claim
sample_claim = ClaimLine(
procedure_code="99213", # Office visit
procedure_code_type="HCPCS",
diagnosis_codes=["E11.9"], # Type 2 diabetes
diagnosis_code_type="ICD10CM",
units=1,
charge_amount=250.00,
service_date="2024-03-15"
)
# Validate claim
validation_result = processor.validate_claim(sample_claim)
print(f"Claim valid: {validation_result.is_valid}")
print(f"Errors: {validation_result.errors}")
print(f"Fraud risk score: {validation_result.fraud_risk_score}")
# Enrich claim
enriched_claim = processor.enrich_claim(sample_claim)
print(f"Additional diagnosis suggestions: {enriched_claim.additional_diagnosis_codes}")
# Check authorization
auth_result = processor.check_prior_authorization(sample_claim, "member_123", "policy_456")
print(f"Authorization required: {auth_result['authorization_required']}")
if __name__ == "__main__":
main()
JavaScript Implementation
Copy
const axios = require('axios');
class InsuranceClaimsProcessor {
constructor(apiKey, baseUrl = 'https://api.omophub.com') {
this.apiKey = apiKey;
this.baseUrl = baseUrl;
this.headers = { 'Authorization': `Bearer ${apiKey}` };
this.fraudPatterns = new Map();
}
async validateClaim(claim) {
const errors = [];
const warnings = [];
const suggestedCodes = [];
// Validate procedure code
try {
const procValidation = await this.validateProcedureCode(
claim.procedureCode,
claim.procedureCodeType
);
if (!procValidation.isValid) {
errors.push(...procValidation.errors);
}
} catch (error) {
errors.push(`Procedure validation error: ${error.message}`);
}
// Validate diagnosis codes
for (const dxCode of claim.diagnosisCodes) {
try {
const dxValidation = await this.validateDiagnosisCode(
dxCode,
claim.diagnosisCodeType
);
if (!dxValidation.isValid) {
errors.push(...dxValidation.errors);
}
} catch (error) {
errors.push(`Diagnosis validation error: ${error.message}`);
}
}
// Check relationships
try {
const relationshipCheck = await this.validateProcedureDiagnosisRelationships(
claim.procedureCode,
claim.diagnosisCodes
);
if (!relationshipCheck.appropriate) {
warnings.push(...relationshipCheck.warnings || []);
suggestedCodes.push(...relationshipCheck.suggestedDiagnoses || []);
}
} catch (error) {
warnings.push(`Relationship validation error: ${error.message}`);
}
const fraudScore = this.calculateFraudRisk(claim);
return {
isValid: errors.length === 0,
errors,
warnings,
suggestedCodes,
fraudRiskScore: fraudScore
};
}
async validateProcedureCode(code, codeType) {
const vocabularyMap = {
'HCPCS': 'HCPCS',
'HCPCS': 'HCPCS'
};
if (!vocabularyMap[codeType]) {
return {
isValid: false,
errors: [`Unsupported procedure code type: ${codeType}`]
};
}
try {
const response = await axios.get(`${this.baseUrl}/v1/concepts/search`, {
headers: this.headers,
params: {
query: code,
vocabulary_ids: vocabularyMap[codeType],
standard_concept: 'S',
page_size: 1
}
});
if (response.data.data && response.data.data.length > 0) {
return {
isValid: true,
conceptName: response.data.data[0].concept_name,
conceptId: response.data.data[0].concept_id
};
} else {
return {
isValid: false,
errors: [`Invalid ${codeType} code: ${code}`]
};
}
} catch (error) {
return {
isValid: false,
errors: [`Error validating procedure code: ${error.message}`]
};
}
}
async validateDiagnosisCode(code, codeType) {
const vocabularyMap = { 'ICD10CM': 'ICD10CM' };
if (!vocabularyMap[codeType]) {
return {
isValid: false,
errors: [`Unsupported diagnosis code type: ${codeType}`]
};
}
try {
const response = await axios.get(`${this.baseUrl}/v1/concepts/search`, {
headers: this.headers,
params: {
query: code,
vocabulary_ids: vocabularyMap[codeType],
standard_concept: 'S',
page_size: 1
}
});
if (response.data.data && response.data.data.length > 0) {
return {
isValid: true,
conceptName: response.data.data[0].concept_name
};
} else {
return {
isValid: false,
errors: [`Invalid ${codeType} code: ${code}`]
};
}
} catch (error) {
return {
isValid: false,
errors: [`Error validating diagnosis code: ${error.message}`]
};
}
}
async validateProcedureDiagnosisRelationships(procedureCode, diagnosisCodes) {
try {
// Get procedure concept
const procResponse = await axios.get(`${this.baseUrl}/v1/concepts/search`, {
headers: this.headers,
params: {
query: procedureCode,
vocabulary_ids: 'HCPCS,HCPCS',
page_size: 1
}
});
if (!procResponse.data.data || procResponse.data.data.length === 0) {
return {
appropriate: false,
warnings: [`Procedure code not found: ${procedureCode}`]
};
}
const procedureConceptId = procResponse.data.data[0].concept_id;
// Get related conditions
const relationsResponse = await axios.get(
`${this.baseUrl}/v1/concepts/${procedureConceptId}/relationships`,
{
headers: this.headers,
params: {
relationship_types: 'Has indication,Treats',
include_synonyms: true
}
}
);
const indicationConcepts = relationsResponse.data.data
?.filter(rel => ['Has indication', 'Treats'].includes(rel.relationship_name))
.map(rel => rel.related_concept) || [];
// Check diagnosis alignment
const appropriateDiagnoses = [];
for (const dxCode of diagnosisCodes) {
const dxResponse = await axios.get(`${this.baseUrl}/v1/concepts/search`, {
headers: this.headers,
params: {
query: dxCode,
vocabulary_ids: 'ICD10CM',
page_size: 1
}
});
if (dxResponse.data.data && dxResponse.data.data.length > 0) {
const dxConceptId = dxResponse.data.data[0].concept_id;
const matches = indicationConcepts.some(
indication => indication.concept_id === dxConceptId
);
if (matches) {
appropriateDiagnoses.push(dxCode);
}
}
}
if (appropriateDiagnoses.length === 0 && diagnosisCodes.length > 0) {
return {
appropriate: false,
warnings: [`Procedure ${procedureCode} may not be appropriate for provided diagnoses`],
suggestedDiagnoses: indicationConcepts.slice(0, 5).map(c => c.concept_code)
};
}
return {
appropriate: true,
matchingDiagnoses: appropriateDiagnoses
};
} catch (error) {
return {
appropriate: false,
warnings: [`Error checking procedure-diagnosis relationships: ${error.message}`]
};
}
}
calculateFraudRisk(claim) {
let riskScore = 0.0;
if (claim.chargeAmount > 10000) {
riskScore += 0.3;
} else if (claim.chargeAmount > 5000) {
riskScore += 0.2;
}
if (claim.units > 10) {
riskScore += 0.2;
}
if (claim.diagnosisCodes.length > 5) {
riskScore += 0.1;
}
const comboKey = `${claim.procedureCode}_${[...claim.diagnosisCodes].sort().join(',')}`;
if (this.fraudPatterns.has(comboKey)) {
riskScore += this.fraudPatterns.get(comboKey);
}
return Math.min(riskScore, 1.0);
}
async enrichClaim(claim) {
const additionalDiagnoses = [];
const alternativeProcedures = [];
const supportingRelationships = [];
try {
// Find related diagnosis codes
for (const dxCode of claim.diagnosisCodes) {
const dxResponse = await axios.get(`${this.baseUrl}/v1/concepts/search`, {
headers: this.headers,
params: {
query: dxCode,
vocabulary_ids: 'ICD10CM',
page_size: 1
}
});
if (dxResponse.data.data && dxResponse.data.data.length > 0) {
const conceptId = dxResponse.data.data[0].concept_id;
const hierarchyResponse = await axios.get(
`${this.baseUrl}/v1/concepts/${conceptId}/hierarchy`,
{
headers: this.headers,
params: {
include_ancestors: true,
include_descendants: true,
max_levels: 2
}
}
);
const related = hierarchyResponse.data.data
?.filter(item =>
item.concept.vocabulary_id === 'ICD10CM' &&
!claim.diagnosisCodes.includes(item.concept.concept_code)
)
.map(item => item.concept.concept_code) || [];
additionalDiagnoses.push(...related);
}
}
} catch (error) {
console.error('Error enriching claim:', error.message);
}
return {
originalClaim: claim,
additionalDiagnosisCodes: [...new Set(additionalDiagnoses)].slice(0, 5),
alternativeProcedureCodes: alternativeProcedures.slice(0, 3),
supportingRelationships
};
}
}
// Example usage
async function main() {
const processor = new InsuranceClaimsProcessor('your-api-key');
const sampleClaim = {
procedureCode: '99213',
procedureCodeType: 'HCPCS',
diagnosisCodes: ['E11.9'],
diagnosisCodeType: 'ICD10CM',
units: 1,
chargeAmount: 250.00,
serviceDate: '2024-03-15'
};
// Validate claim
const validation = await processor.validateClaim(sampleClaim);
console.log('Claim valid:', validation.isValid);
console.log('Errors:', validation.errors);
console.log('Fraud risk score:', validation.fraudRiskScore);
// Enrich claim
const enriched = await processor.enrichClaim(sampleClaim);
console.log('Additional diagnosis suggestions:', enriched.additionalDiagnosisCodes);
}
if (require.main === module) {
main().catch(console.error);
}
module.exports = { InsuranceClaimsProcessor };
R Implementation
Copy
library(httr)
library(jsonlite)
library(dplyr)
library(purrr)
InsuranceClaimsProcessor <- R6::R6Class(
"InsuranceClaimsProcessor",
public = list(
api_key = NULL,
base_url = NULL,
headers = NULL,
fraud_patterns = NULL,
initialize = function(api_key, base_url = "https://api.omophub.com") {
self$api_key <- api_key
self$base_url <- base_url
self$headers <- add_headers(Authorization = paste("Bearer", api_key))
self$fraud_patterns <- list()
},
validate_claim = function(claim) {
errors <- character(0)
warnings <- character(0)
suggested_codes <- character(0)
# Validate procedure code
proc_validation <- tryCatch({
self$validate_procedure_code(claim$procedure_code, claim$procedure_code_type)
}, error = function(e) {
list(is_valid = FALSE, errors = paste("Procedure validation error:", e$message))
})
if (!proc_validation$is_valid) {
errors <- c(errors, proc_validation$errors)
}
# Validate diagnosis codes
for (dx_code in claim$diagnosis_codes) {
dx_validation <- tryCatch({
self$validate_diagnosis_code(dx_code, claim$diagnosis_code_type)
}, error = function(e) {
list(is_valid = FALSE, errors = paste("Diagnosis validation error:", e$message))
})
if (!dx_validation$is_valid) {
errors <- c(errors, dx_validation$errors)
}
}
# Check relationships
relationship_check <- tryCatch({
self$validate_procedure_diagnosis_relationships(
claim$procedure_code,
claim$diagnosis_codes
)
}, error = function(e) {
list(
appropriate = FALSE,
warnings = paste("Relationship validation error:", e$message)
)
})
if (!relationship_check$appropriate) {
if (!is.null(relationship_check$warnings)) {
warnings <- c(warnings, relationship_check$warnings)
}
if (!is.null(relationship_check$suggested_diagnoses)) {
suggested_codes <- c(suggested_codes, relationship_check$suggested_diagnoses)
}
}
fraud_score <- self$calculate_fraud_risk(claim)
list(
is_valid = length(errors) == 0,
errors = errors,
warnings = warnings,
suggested_codes = suggested_codes,
fraud_risk_score = fraud_score
)
},
validate_procedure_code = function(code, code_type) {
vocabulary_map <- list(
"HCPCS" = "HCPCS",
"HCPCS" = "HCPCS"
)
if (!code_type %in% names(vocabulary_map)) {
return(list(
is_valid = FALSE,
errors = paste("Unsupported procedure code type:", code_type)
))
}
response <- GET(
paste0(self$base_url, "/v1/concepts/search"),
self$headers,
query = list(
query = code,
vocabulary_ids = vocabulary_map[[code_type]],
standard_concept = "S",
page_size = 1
)
)
if (status_code(response) != 200) {
return(list(
is_valid = FALSE,
errors = paste("Error validating procedure code:", status_code(response))
))
}
data <- fromJSON(content(response, "text"))
if (length(data$data) > 0) {
list(
is_valid = TRUE,
concept_name = data$data$concept_name[1],
concept_id = data$data$concept_id[1]
)
} else {
list(
is_valid = FALSE,
errors = paste("Invalid", code_type, "code:", code)
)
}
},
validate_diagnosis_code = function(code, code_type) {
vocabulary_map <- list("ICD10CM" = "ICD10CM")
if (!code_type %in% names(vocabulary_map)) {
return(list(
is_valid = FALSE,
errors = paste("Unsupported diagnosis code type:", code_type)
))
}
response <- GET(
paste0(self$base_url, "/v1/concepts/search"),
self$headers,
query = list(
query = code,
vocabulary_ids = vocabulary_map[[code_type]],
standard_concept = "S",
page_size = 1
)
)
if (status_code(response) != 200) {
return(list(
is_valid = FALSE,
errors = paste("Error validating diagnosis code:", status_code(response))
))
}
data <- fromJSON(content(response, "text"))
if (length(data$data) > 0) {
list(
is_valid = TRUE,
concept_name = data$data$concept_name[1]
)
} else {
list(
is_valid = FALSE,
errors = paste("Invalid", code_type, "code:", code)
)
}
},
validate_procedure_diagnosis_relationships = function(procedure_code, diagnosis_codes) {
# Get procedure concept
proc_response <- GET(
paste0(self$base_url, "/v1/concepts/search"),
self$headers,
query = list(
query = procedure_code,
vocabulary_ids = "HCPCS,HCPCS",
page_size = 1
)
)
if (status_code(proc_response) != 200) {
return(list(
appropriate = FALSE,
warnings = paste("Error fetching procedure:", status_code(proc_response))
))
}
proc_data <- fromJSON(content(proc_response, "text"))
if (length(proc_data$data) == 0) {
return(list(
appropriate = FALSE,
warnings = paste("Procedure code not found:", procedure_code)
))
}
procedure_concept_id <- proc_data$data$concept_id[1]
# Get related conditions
relations_response <- GET(
paste0(self$base_url, "/v1/concepts/", procedure_concept_id, "/relationships"),
self$headers,
query = list(
relationship_types = "Has indication,Treats",
include_synonyms = TRUE
)
)
if (status_code(relations_response) != 200) {
return(list(
appropriate = FALSE,
warnings = "Error fetching procedure relationships"
))
}
relations_data <- fromJSON(content(relations_response, "text"))
indication_concepts <- relations_data$data %>%
filter(relationship_name %in% c("Has indication", "Treats")) %>%
pull(related_concept)
# Check diagnosis alignment
appropriate_diagnoses <- character(0)
for (dx_code in diagnosis_codes) {
dx_response <- GET(
paste0(self$base_url, "/v1/concepts/search"),
self$headers,
query = list(
query = dx_code,
vocabulary_ids = "ICD10CM",
page_size = 1
)
)
if (status_code(dx_response) == 200) {
dx_data <- fromJSON(content(dx_response, "text"))
if (length(dx_data$data) > 0) {
dx_concept_id <- dx_data$data$concept_id[1]
matching <- any(map_lgl(indication_concepts, ~ .x$concept_id == dx_concept_id))
if (matching) {
appropriate_diagnoses <- c(appropriate_diagnoses, dx_code)
}
}
}
}
if (length(appropriate_diagnoses) == 0 && length(diagnosis_codes) > 0) {
suggested_diagnoses <- if (length(indication_concepts) > 0) {
head(map_chr(indication_concepts, ~ .$concept_code %||% ""), 5)
} else {
character(0)
}
list(
appropriate = FALSE,
warnings = paste("Procedure", procedure_code, "may not be appropriate for provided diagnoses"),
suggested_diagnoses = suggested_diagnoses
)
} else {
list(
appropriate = TRUE,
matching_diagnoses = appropriate_diagnoses
)
}
},
calculate_fraud_risk = function(claim) {
risk_score <- 0.0
if (claim$charge_amount > 10000) {
risk_score <- risk_score + 0.3
} else if (claim$charge_amount > 5000) {
risk_score <- risk_score + 0.2
}
if (claim$units > 10) {
risk_score <- risk_score + 0.2
}
if (length(claim$diagnosis_codes) > 5) {
risk_score <- risk_score + 0.1
}
combo_key <- paste(claim$procedure_code, paste(sort(claim$diagnosis_codes), collapse = ","), sep = "_")
if (combo_key %in% names(self$fraud_patterns)) {
risk_score <- risk_score + self$fraud_patterns[[combo_key]]
}
min(risk_score, 1.0)
},
enrich_claim = function(claim) {
additional_diagnoses <- character(0)
alternative_procedures <- character(0)
supporting_relationships <- list()
tryCatch({
# Find related diagnosis codes
for (dx_code in claim$diagnosis_codes) {
dx_response <- GET(
paste0(self$base_url, "/v1/concepts/search"),
self$headers,
query = list(
query = dx_code,
vocabulary_ids = "ICD10CM",
page_size = 1
)
)
if (status_code(dx_response) == 200) {
dx_data <- fromJSON(content(dx_response, "text"))
if (length(dx_data$data) > 0) {
concept_id <- dx_data$data$concept_id[1]
hierarchy_response <- GET(
paste0(self$base_url, "/v1/concepts/", concept_id, "/hierarchy"),
self$headers,
query = list(
include_ancestors = TRUE,
include_descendants = TRUE,
max_levels = 2
)
)
if (status_code(hierarchy_response) == 200) {
hierarchy_data <- fromJSON(content(hierarchy_response, "text"))
related_codes <- hierarchy_data$data %>%
filter(
concept$vocabulary_id == "ICD10CM",
!concept$concept_code %in% claim$diagnosis_codes
) %>%
pull(concept) %>%
map_chr(~ .$concept_code)
additional_diagnoses <- c(additional_diagnoses, related_codes)
}
}
}
}
}, error = function(e) {
message("Error enriching claim: ", e$message)
})
list(
original_claim = claim,
additional_diagnosis_codes = unique(additional_diagnoses)[1:min(5, length(unique(additional_diagnoses)))],
alternative_procedure_codes = alternative_procedures[1:min(3, length(alternative_procedures))],
supporting_relationships = supporting_relationships
)
}
)
)
# Example usage
example_usage <- function() {
processor <- InsuranceClaimsProcessor$new("your-api-key")
sample_claim <- list(
procedure_code = "99213",
procedure_code_type = "HCPCS",
diagnosis_codes = c("E11.9"),
diagnosis_code_type = "ICD10CM",
units = 1,
charge_amount = 250.00,
service_date = "2024-03-15"
)
# Validate claim
validation_result <- processor$validate_claim(sample_claim)
cat("Claim valid:", validation_result$is_valid, "\n")
cat("Errors:", paste(validation_result$errors, collapse = ", "), "\n")
cat("Fraud risk score:", validation_result$fraud_risk_score, "\n")
# Enrich claim
enriched_claim <- processor$enrich_claim(sample_claim)
cat("Additional diagnosis suggestions:", paste(enriched_claim$additional_diagnosis_codes, collapse = ", "), "\n")
}
Example Implementation Scenarios
Scenario 1: Comprehensive Claim Processing
Copy
# Process a complex surgical claim
processor = InsuranceClaimsProcessor("your-api-key")
complex_claim = ClaimLine(
procedure_code="27447", # Total knee replacement
procedure_code_type="HCPCS",
diagnosis_codes=["M17.11", "Z96.651"], # Osteoarthritis, knee implant status
diagnosis_code_type="ICD10CM",
units=1,
charge_amount=45000.00,
service_date="2024-03-15"
)
# Full processing pipeline
validation = processor.validate_claim(complex_claim)
auth_check = processor.check_prior_authorization(complex_claim, "member_456", "policy_789")
enrichment = processor.enrich_claim(complex_claim)
print("=== Claim Processing Results ===")
print(f"Valid: {validation.is_valid}")
print(f"Fraud Risk: {validation.fraud_risk_score:.2f}")
print(f"Authorization Required: {auth_check['authorization_required']}")
print(f"Additional Codes Suggested: {len(enrichment.additional_diagnosis_codes)}")
Copy
=== Claim Processing Results ===
Valid: True
Fraud Risk: 0.30
Authorization Required: True
Additional Codes Suggested: 3
Scenario 2: Batch Claims Processing
Copy
# Process multiple claims efficiently
claims_batch = [
ClaimLine("99213", "HCPCS", ["E11.9"], "ICD10CM", 1, 250.00, "2024-03-15"),
ClaimLine("27447", "HCPCS", ["M17.11"], "ICD10CM", 1, 45000.00, "2024-03-15"),
ClaimLine("93000", "HCPCS", ["I25.9"], "ICD10CM", 1, 150.00, "2024-03-15")
]
batch_results = processor.process_batch_claims(claims_batch)
print(f"Total Claims: {batch_results['total_claims']}")
print(f"Valid Claims: {batch_results['valid_claims']}")
print(f"High Risk Claims: {batch_results['high_risk_claims']}")
print(f"Authorization Required: {batch_results['claims_requiring_auth']}")
Copy
Total Claims: 3
Valid Claims: 3
High Risk Claims: 1
Authorization Required: 1
Scenario 3: Fraud Detection Analysis
Copy
# Analyze potentially fraudulent claim patterns
suspicious_claim = ClaimLine(
procedure_code="99215", # High-level office visit
procedure_code_type="HCPCS",
diagnosis_codes=["M79.601", "M79.602", "M79.603", "M25.511", "M25.512"], # Multiple pain codes
diagnosis_code_type="ICD10CM",
units=15, # Unusual high units
charge_amount=12000.00, # High charge
service_date="2024-03-15"
)
validation = processor.validate_claim(suspicious_claim)
print(f"Fraud Risk Score: {validation.fraud_risk_score:.2f}")
print(f"Risk Factors: High charge amount, excessive units, multiple similar diagnoses")
Integration Patterns
Healthcare Payer Integration
Copy
class PayerClaimsSystem:
def __init__(self, omophub_processor, payer_config):
self.processor = omophub_processor
self.payer_config = payer_config
def process_claim_submission(self, claim_data):
# Convert payer format to OMOPHub format
omophub_claim = self.convert_to_omophub_format(claim_data)
# Validate and enrich
validation = self.processor.validate_claim(omophub_claim)
enrichment = self.processor.enrich_claim(omophub_claim)
# Apply payer-specific business rules
payer_validation = self.apply_payer_rules(claim_data, validation)
return {
'claim_id': claim_data['claim_id'],
'status': 'approved' if validation.is_valid and payer_validation else 'denied',
'omophub_validation': validation,
'suggested_codes': enrichment.additional_diagnosis_codes,
'payer_notes': payer_validation.get('notes', [])
}
EMR Integration
Copy
class EMRClaimsValidator {
constructor(omophubProcessor, emrConfig) {
this.processor = omophubProcessor;
this.emrConfig = emrConfig;
}
async validateBeforeSubmission(encounterData) {
const claims = this.extractClaimsFromEncounter(encounterData);
const validationResults = [];
for (const claim of claims) {
const validation = await this.processor.validateClaim(claim);
const enrichment = await this.processor.enrichClaim(claim);
validationResults.push({
claim,
validation,
enrichment,
recommendedActions: this.generateRecommendations(validation, enrichment)
});
}
return {
overallStatus: validationResults.every(r => r.validation.isValid) ? 'ready' : 'needs_review',
claims: validationResults,
totalPotentialReimbursement: this.calculatePotentialReimbursement(validationResults)
};
}
generateRecommendations(validation, enrichment) {
const recommendations = [];
if (!validation.isValid) {
recommendations.push({
type: 'error',
message: 'Fix coding errors before submission',
actions: validation.errors
});
}
if (enrichment.additionalDiagnosisCodes.length > 0) {
recommendations.push({
type: 'enhancement',
message: 'Consider adding additional diagnosis codes',
actions: enrichment.additionalDiagnosisCodes
});
}
if (validation.fraudRiskScore > 0.7) {
recommendations.push({
type: 'warning',
message: 'High fraud risk - review documentation',
actions: ['Verify medical necessity', 'Check supporting documentation']
});
}
return recommendations;
}
}
Best Practices
Error Handling and Resilience
Copy
# Required packages: pip install tenacity pybreaker
from tenacity import retry, stop_after_attempt, wait_exponential
from pybreaker import CircuitBreaker
import time
class RobustClaimsProcessor(InsuranceClaimsProcessor):
def __init__(self, api_key, base_url="https://api.omophub.com"):
super().__init__(api_key, base_url)
self.retry_config = {
'max_retries': 3,
'backoff_factor': 2,
'timeout': 30
}
self.circuit_breaker = CircuitBreaker(fail_max=5, reset_timeout=60)
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=1, max=10))
def validate_claim_with_fallback(self, claim):
try:
return self.validate_claim(claim)
except requests.RequestException as e:
# Fallback to basic validation
return self._basic_validation_fallback(claim, str(e))
def _basic_validation_fallback(self, claim, error_msg):
"""Fallback validation when API is unavailable."""
basic_errors = []
# Basic format validation
if not claim.procedure_code or len(claim.procedure_code) < 3:
basic_errors.append("Invalid procedure code format")
if not claim.diagnosis_codes or len(claim.diagnosis_codes) == 0:
basic_errors.append("No diagnosis codes provided")
return ClaimValidationResult(
is_valid=len(basic_errors) == 0,
errors=basic_errors,
warnings=[f"API unavailable: {error_msg}"],
suggested_codes=[],
fraud_risk_score=0.0
)
Performance Optimization
Copy
from functools import lru_cache
import requests
from collections import defaultdict
# Module-level cached function for code validation
@lru_cache(maxsize=1000)
def _cached_code_validation(code: str, vocabulary: str, base_url: str, api_key: str) -> bool:
"""Cache frequently validated codes."""
try:
headers = {"Authorization": f"Bearer {api_key}"}
response = requests.get(
f"{base_url}/v1/concepts/search",
headers=headers,
params={'query': code, 'vocabulary_ids': vocabulary, 'page_size': 1}
)
return len(response.json().get('data', [])) > 0
except:
return False
class OptimizedClaimsProcessor(InsuranceClaimsProcessor):
def __init__(self, api_key, base_url="https://api.omophub.com"):
super().__init__(api_key, base_url)
self.cache = {}
self.batch_size = 50
def process_claims_optimized(self, claims: List[ClaimLine]) -> Dict:
"""Optimized batch processing with caching and concurrent requests."""
# Group similar claims for batch processing
claim_groups = self._group_claims_by_similarity(claims)
results = []
for group in claim_groups:
# Process each group with cached lookups
group_results = self._process_claim_group(group)
results.extend(group_results)
return self._aggregate_results(results)
def _group_claims_by_similarity(self, claims):
"""Group claims with same procedure/diagnosis combinations."""
groups = defaultdict(list)
for claim in claims:
key = f"{claim.procedure_code}_{','.join(sorted(claim.diagnosis_codes))}"
groups[key].append(claim)
return list(groups.values())
def validate_code_cached(self, code: str, vocabulary: str) -> bool:
"""Validate code using cached lookup."""
return _cached_code_validation(code, vocabulary, self.base_url, self.api_key)
Security and Compliance
Copy
class HIPAACompliantClaimsProcessor(InsuranceClaimsProcessor):
def __init__(self, api_key, base_url="https://api.omophub.com"):
super().__init__(api_key, base_url)
self.audit_logger = self._setup_audit_logging()
self.phi_detector = PHIDetector()
def process_claim_secure(self, claim: ClaimLine, user_context: Dict) -> ClaimValidationResult:
"""HIPAA-compliant claim processing with full audit trail."""
audit_id = str(uuid.uuid4())
try:
# Log access attempt
self.audit_logger.info({
'audit_id': audit_id,
'action': 'claim_validation_start',
'user_id': user_context['user_id'],
'timestamp': datetime.utcnow().isoformat(),
'claim_id': getattr(claim, 'claim_id', 'unknown')
})
# Detect and mask PHI
sanitized_claim = self._sanitize_phi(claim)
# Process with standard validation
result = self.validate_claim(sanitized_claim)
# Log successful completion
self.audit_logger.info({
'audit_id': audit_id,
'action': 'claim_validation_complete',
'status': 'success',
'timestamp': datetime.utcnow().isoformat()
})
return result
except Exception as e:
# Log error
self.audit_logger.error({
'audit_id': audit_id,
'action': 'claim_validation_error',
'error': str(e),
'timestamp': datetime.utcnow().isoformat()
})
raise
def _sanitize_phi(self, claim: ClaimLine) -> ClaimLine:
"""Remove or mask potential PHI from claim data."""
# Implementation would depend on specific PHI detection requirements
return claim
def _setup_audit_logging(self):
"""Configure HIPAA-compliant audit logging."""
logger = logging.getLogger('hipaa_audit')
logger.setLevel(logging.INFO)
# Configure secure, encrypted log storage
handler = SecureFileHandler('/var/log/hipaa/claims_audit.log')
formatter = logging.Formatter(
'%(asctime)s - %(levelname)s - %(message)s'
)
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger